dien-3 β -ol acetate (9) (200 mg) (6%): mp 89-90° (from MeOH); [α]p -122°; nmr (CDCl₃) δ 0.80 (C-18 CH₃), 1.16 (C-19 CH₃), 5.58 (C-6 H), and 5.81 (m, C-17 and C-16 vinyl protons). Anal. (C₂₁H₃₀O₂) C, H.

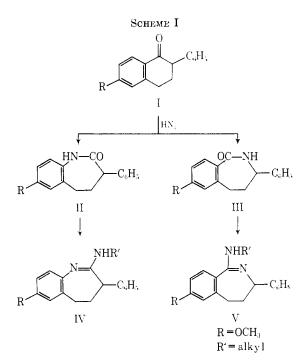
N-Methyl-*N*-(3-dimethylamino)propyl-17α-aminoandrost-5en-3β-ol (5).—To a soln of 3 (0.3 g) in dry C₆H₆ (7 ml) and N(Et)₃ (1.5 ml) a soln of EtOCOCI (0.5 ml) in dry C₆H₆ (2 ml) was added dropwise and the mixture was refluxed for 4 hr. The reaction mixture was then allowed to cool and washed with H₂O. The organic phase was sepd, dried (Na₂SO₄), and evapd. The residue was characterized as 4, and was used without further purification. To a slurry of LAH (0.3 g) in dioxane a soln of 4 (0.2 g) in dry dioxane (10 ml) was added, and the mixture was refluxed under N₂ for 24 hr. The excess hydride was decompd by successive dropwise addn of aq dioxane (1:3, 4 ml), 20% NaOH soln, and H₂O. The insol salts were removed by filtration and washed with hot dioxane. The filtrate was then evapd and the oily residue was extd with Et₂O. The Et₂O ext was washed with H₂O, dried (Na₂SO₄), and evapd. The oily residue solidified upon addn of H₂O. Recrystn from Me₂CO gave 5 17α-(3-Dimethylaminopropyl)amino-5α-androstan-3β-ol (11a). —A soln of 5α-androstan-3β,17β-diol 3-acetate 17-tosylate¹⁴ (2.0 g) in freshly distd 3-dimethylaminopropylamine (30 ml) was refluxed for 48 hr and worked up as described above. The basic fraction afforded (250 mg, $16.6C_{\odot}$): mp 147-149°; nmr (CDCl₃) δ 0.73 (C-18 CH₃); nmr (pyridine) δ 0.74 (C-18 CH₃). Anal. (C₂₄H₄₄N₂O) C, 11. The neutral fraction was not examined in this case.

N-Methyl-*N*-(3-dimethylamino)propyl-17 α -amino-5 α -androstan-3 β -ol (11b).--Methylation of 11a as described above afforded 11b (34%) which was isolated as the dihydrochloride salt. Recrystn from *i*-PrOH gave a white solid; mp 278-280° dec; nmr (of free base) (CDCl₃) δ 0.72 (C-18 CH₃); nmr (pyridine) δ 0.72 (C-18 CH₃). Anal. (C₂₅H₄₈Cl₂N₂O·H₂O) C, II.

(14) O. S. Madaeva, Zh. Obshch. Khim., 27, 2573 (1957); Chem. Abstr., 52, 7342a (1958).

Hypoglycemic Cyclic Amidines

L. I. BARSKY AND W. L. BENCZE*


Research Division, CIBA Pharmaceutical Company, Division of CIBA Corporation, Summit, New Jersey 07901

Received June 12, 1970

Substituted tetralones were converted into cyclic lactams and amidines. Nine out of sixteen cyclic amidines exhibited weak to moderate hypoglycemic activity in the rat.

Substituted tetralones¹ and dihydro- or tetrahydronaphthalenes derived from them^{2,3} have been studied repeatedly in our laboratories in the past 10 years. The present report describes the preparation of a number of cyclic amidines derived from a variety of substituted tetralones and the hypoglycemic activity exhibited by some of them.

Scheme I illustrates the types of compounds which have been prepared. In general, tetralone⁴ and a few 2-aryl substituted tetralones (I) yield only one of the two possible lactams when subjected to the Schmidt reaction. These lactams are 1,3,4,5-tetrahydro-2H-1-benzazepin-2-ones (II). However, 6methoxy-2-phenyltetralone (I, $R = OCH_3$) gave both the acylanilide (II) and the benzamide (III) type lactams. Werner and coworkers found that both lactams were produced when 3- or 4-phenyltetralones were subjected to the Schmidt reaction.⁵ Evans and Lockhart studied the effects of various substituents of tetralones which guided the course of the Schmidt reaction either to afford the acylanilide or the benzamide type lactams.⁶ Identification of the isomeric benzazepinones II and III was facilitated by the ease of hydrolytic fission of the acylanilide type lactams (II) by hydrochloric acid, in contrast to the stability of the benzamide type lactams (III), which under the same conditions were unaffected by acid treatment.⁶

In addition, the uv, ir, and nmr spectra were found to be useful tools in the assignment of the correct structure to the isomeric benzazepinones.^{6,7} We have made use of both the spectral and chemical tools in the identification of the lactams obtained from the tetralones by the Schmidt reaction. Table I shows the acylanilide type lactums, while Table II depicts the benzamide type lactums. The amidines derived from these lactums are compiled in Tables III and IV, re-

^{*} To whom correspondence should be addressed.

⁽¹⁾ W. L. Bencze and L. I. Barsky, J. Med. Chem., 5, 1298 (1962).

⁽²⁾ W. L. Bencze, L. I. Barsky, W. P. Sopchak, A. A. Renzi, N. Howie, and J. J. Chart, *ibid.*, **8**, 213 (1965).

⁽³⁾ W. L. Bencze, L. I. Barksy, R. W. J. Carney, A. A. Renzi, and George deStevens, *ibid.*, **10**, 138 (1967).

⁽⁴⁾ P. A. S. Smith, J. Amer. Chem. Soc., 70, 320 (1948).

⁽⁵⁾ L. H. Werner, S. Ricca, A. Rossi, and George deStevens, J. Med. Chem., 10, 575 (1967).

⁽⁶⁾ D. Evans and I. M. Lockhart, J. Chem. Soc., 4806 (1965).

⁽⁷⁾ S. Minami, M. Tomita, H. Takamatsu, and S. Uyeo, Chem. Pharm. Bull., 13, 1084 (1965).

 TABLE I

 1,3,4,5-Tetrahydro-2H-1-benzazepin-2-ones and Thio Analogs

			R ₃	$ imes_{\mathtt{R}_2}$				
No.	\mathbf{R}_{1}	R 2	R3	R_4	x	Mp, °C	% yield	Formula ^c
1	Н	3-(3-Pyridyl)	н	Н	0	183 - 187	66	$\mathrm{C}_{15}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}$
2	Н	3-Methyl-						
		3-(3-pyridyl)	н	Н	0	226 - 228	66	$\mathrm{C}_{16}\mathrm{H}_{16}\mathrm{N}_{2}\mathrm{O}$
3	Н	$3-C_6H_5$	Cl	н	0	248 - 250	33	$C_{16}H_{14}CINO$
4	Н	$3-C_6H_5$	OCH_3	Н	0	191 - 193	36	$\mathrm{C}_{17}\mathrm{H}_{17}\mathrm{NO}_2$
5	$(CH_2)_9CH_3$	$3-C_6H_5$	OCH_3	Н	0	50 - 52	75	$\mathrm{C}_{27}\mathrm{H}_{37}\mathrm{NO}_2$
6	Н	$3-C_6H_5$	OCH_3	OCH_3	0	200 - 202	44	$\mathrm{C}_{18}\mathrm{H}_{19}\mathrm{NO}_{3}$
7	Н	$5-C_6H_5$	н	Н	0	179 - 180	84	$C_{16}H_{15}NO$
8	CH_3	$5-C_6H_5$	н	Н	0	102 - 104	76	$C_{17}H_{17}NO$
9	Н	Н	н	$C_6H_{11}{}^a$	0	173 - 175	45	$\mathrm{C}_{16}\mathrm{H}_{21}\mathrm{NO}$
10	Н	Н	н	Н	\mathbf{S}	132 - 133	77	$C_{10}H_{11}NS$
11^{b}	Н	$3-C_6H_5$	н	Н	\mathbf{S}	224 - 225	99	$\mathrm{C}_{16}\mathrm{H}_{15}\mathrm{NS}$
12^{b}	Н	$3-(p-ClC_6H_4)$	н	Н	\mathbf{S}	267 - 270	98	$C_{16}H_{14}CINS$
13	Н	$3-C_6H_5$	OCH_3	н	\mathbf{S}	208 - 209	97	$C_{17}H_{17}NOS$
14	Н	$3-C_6H_5$	OCH_3	OCH_3	\mathbf{S}	208 - 211	59	$\mathrm{C}_{18}\mathrm{H}_{19}\mathrm{NO}_{2}\mathrm{S}$
15	Н	$5-C_6H_5$	Н	Н	\mathbf{S}	192 - 193	65	$C_{16}H_{15}NS$
16	Н	Н	Н	$\mathrm{C}_{6}\mathrm{H}_{11}{}^{a}$	\mathbf{S}	181 - 183	85	$C_{16}H_{21}NS$

^a C₆H₁₁ = cyclohexyl. ^b Prepared from the corresponding lactam, ref 5. ^c All compds were analyzed for C, H, N.

 TABLE II

 2,3,4,5-Tetrahydro-1H-2-benzazepin-1-ones, 3,4-Dihydro-1,4-benzoxazepin-5(2H)-ones, and Thio Analogs

				- R ₃				
No.	\mathbf{R}_{1}	\mathbf{R}_2	\mathbf{R}_3	\mathbf{R}_{4}	х	Mp or bp, °C (mm)	% yi e ld	$\mathbf{Formula}^{b}$
17	Н	н	CH_2	$8-C_6H_{11}$	0	170-172	38	$C_{16}H_{21}NO$
18	Н	C_6H_5	CH_2	7-OCH₃	0	146 - 149	25	$\mathrm{C}_{17}\mathrm{H}_{17}\mathrm{NO}_2$
19	Н	Н	$\mathrm{CHC}_{6}\mathrm{H}_{5}$	н	0	226 - 228	26	$C_{16}H_{15}NO$
20	Н	Н	0	н	0	$116 - 117^{a}$	67	$C_9H_9NO_2$
21	$(CH_2)_2 N (C_2 H_5)_2$	Н	0	н	0	160-165 (0.25)	79	$C_{15}H_{22}N_2O_2$
22	$CH_2C_6H_4Cl(p)$	Н	0	Н	0	80-81	85	$C_{16}H_{14}ClNO_2$
23	Н	Н	CH_2	$8 - C_6 H_{11}$	\mathbf{S}	164 - 166	88	$C_{16}H_{21}NS$
24	Н	C_6H_5	CH_2	7-OCH₃	\mathbf{S}	140-141	7 0	$C_{17}H_{17}NOS$
25	Н	Н	CHC_6H_5	н	\mathbf{S}	167 - 169	71	$C_{16}H_{15}NS$
26	$\mathrm{CH}_{\mathtt{3}}$	Н	CHC ₆ H₅	Н	\mathbf{S}	196 - 197	18	$C_{17}H_{17}NS$
27	Н	Н	0	Н	\mathbf{S}	106-107	71	C_9H_9NOS
28	\mathbf{CH}_{3}	Н	0	Н	\mathbf{S}	141-144	15	$C_{10}H_{11}NOS$
29	$\mathrm{CH}_{2}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{Cl}(p)$	Н	0	н	\mathbf{S}	123 - 125	35	$C_{16}H_{14}ClNOS$
<i>a</i> D 1	T 1.1. T 3.7 T 11 .	1 3 6 337 1		1105 (100	- \	D4 0011 110	• • • •	

^a D. Huckle, I. M. Lockhart, and M. Wright, J. Chem. Soc., 1137 (1965), report mp 114-116°. ^b See footnote c, Table I.

spectively. The acids which resulted from the hydrolysis of five substituted 1-benzazepin-2-ones are listed in Table V.

Tomita, et al., arrived at the conclusion that in the Schmidt reaction the direction of the rearrangement was markedly influenced by the substitutents in the aromatic ring and also, to a lesser degree, by the acid medium used in the reaction.⁸ These authors also reported that certain substituents in position 7 of the tetralone moiety did not influence the direction of the rearrangement. We have found that 7-cyclohexyl-1-tetralone furnished about equimolar amounts of the two lactams 9 and 17. Similarly, a derivative of 6-methoxy-1-tetralone was reported to afford approximately equal amounts of the aryl and the alkyl migration products.⁷ This was also the case with 6-methoxy-2-phenyl-1-tetralone, which gave the two lactams 4 and 18. While 1-tetralone yields only the acylanilide type lactam (II), 4-chromanone furnishes only the benzamide type lactam $20.^{9}$ A few of the lactams were alkylated on the amide N to give 5, 8, 21, and 22.

Conversion of the lactams into cyclic amidines was achieved by known methods as pictured in Scheme II.

Brown has reported that S-alkylthiopyrimidines react with amines more readily than do the corresponding thiopyrimidines.¹⁰ Archer and Sternbach confirmed Brown's observation in their studies of the conversion of the thioamide and the thioimidate groups in a series of substituted 1,4-benzodiazepines.¹¹ Therefore, we made no attempt to convert thiolactams VII directly into amidines IX, but we prepared the in-

- (8) M. Tomita, S. Minami, and S. Uyeo, J. Chem. Soc. C, 183 (1969).
- (11) G. A. Archer and L. H. Sternbach, J. Org. Chem., 29, 231 (1964).

⁽⁹⁾ D. Huckle, I. M. Lockhart, and M. Wright, *ibid.*, 1137 (1965).

⁽¹⁰⁾ D. J. Brown, "The Chemistry of Heterocyclic Compounds," Vol. XVI, A. Weissberger, Ed., Interscience Publishers, New York, N. Y., 1962, p 283.

TABLE III 4,5-Dihydro-3H-1-benzazepines

						%	
No.	\mathbf{R}_{1}	\mathbf{R}_{2}	R3	\mathbf{R}_4	Mp or bp, °C (mm)	Yield	Formula ^c
30	SCH_3	Н	Н	Н	121 - 122 (0.15)	7 0	$C_{11}H_{13}NS^d$
31	SCH_3	Н	Н	C_6H_{11}	190-195 (0.25)	64	$C_{17}H_{23}NS$
32	SCH_3	$3-C_6H_5$	Н	Н	170-175 (0.20)	68	$C_{17}H_{17}NS$
33	SCH_3	$3-(p-ClC_6H_4)$	Н	Η	172 - 182(0.20)	65	C17H16CINS
34	SCH_3	$5-C_6H_5$	Η	H	137-139	40	$C_{17}H_{17}NS$
35	SCH_3	$3-C_6H_5$	OCH3	Н	200-208 (0.15)	78	$C_{18}H_{19}NOS$
36	SCH_3	$3-C_6H_5$	OCH_3	OCH3	162-164	62	$C_{19}H_{21}NO_2S$
37	$S(CH_2)_2NC_5H_{10}$	$3-C_6H_5$	Н	Н	a	36	$C_{23}H_{28}N_2S$
38	NHCH ₈ ·HCl	$3-C_6H_5$	н	Н	268 - 271	63	$C_{17}H_{18}N_2 \cdot HCl$
39	$\rm NHC_2H_5 \cdot HCl$	$3-C_6H_5$	Н	Η	264 - 267	21	$C_{18}H_{20}N_2 \cdot HCl$
40	$\mathrm{NHCH}_{2}\mathrm{C}_{6}\mathrm{H}_{5}\cdot\mathrm{HCl}$	$3-(p-Cl-C_6H_4)$	Н	Н	220-221	55	$C_{23}H_{21}ClN_2 \cdot HCl$
41	$\mathbf{NHC}_{3}\mathbf{H}_{7}\cdot\mathbf{HCl}^{b}$	$3-(p-ClC_6H_4)$	Η	Н	196 - 197	80	$C_{19}H_{21}ClN_2 \cdot HCl \cdot 0.5H_2O$
42	$NH(CH_2)_3OCH_3 \cdot HCl$	$3-(p-ClC_6H_4)$	Η	Η	159-162	54	$C_{20}H_{23}ClN_2O\cdot HCl_2$
4 3	$\mathbf{NHC}_{3}\mathbf{H}_{7}\cdot\mathbf{HCl}^{b}$	$3-C_6H_5$	H	Η	196 - 197	69	$C_{19}H_{22}N_2 \cdot HCl$
44	$\mathbf{NHC}_{\$}\mathbf{H}_{7}\cdot\mathbf{HCl}^{b}$	$5-C_6H_5$	\mathbf{H}	Н	210-212	7	$C_{21}H_{28}N_2O\cdot HCl$
45	$\mathbf{NHCH}_{2}\mathbf{C}_{6}\mathbf{H}_{5}\cdot\mathbf{HCl}$	$5-C_6H_5$	Η	H	122 - 125	4 2	$C_{23}H_{22}N_2 \cdot HCl$
46	$\rm NHCH_2C_6H_5 \cdot HCl$	Η	Η	H	248 - 250	37	$C_{17}H_{18}N_2 \cdot HCl$
47	NH	$3-C_6H_5$	OCH ₃	Н	260-261	21	$C_{20}H_{22}N_2O \cdot HCl$
48	$\mathrm{NHC}_{3}\mathrm{H}_{7}\cdot\mathrm{HCl}^{b}$	$3-C_6H_5$	OCH3	Η	197-198	49	$C_{20}H_{24}N_2O \cdot HCl$
49	$\mathrm{NHC}_{3}\mathrm{H}_{7}\cdot\mathrm{HCl}^{b}$	Н	Н	C_6H_{11}	209-211	56	$C_{19}H_{28}N_2O \cdot HCl$
50	$NHCH(CH_3)_2 \cdot HCl$	Н	Н	C_6H_{11}	223 - 225	42	$C_{19}H_{28}N_2O\cdot HCl$
o Oil purif	fied by chromatography. ^b NH	$HC_{8}H_{7} = NHCH_{2}C$	CH_2CH_3 .	See Table	e I, footnote c . ^d N	anal. on	ıly.

TABLE IV

4,5-Dihydro-3*H*-2-benzazepines and 2,3-Dihydro-1,4-benzoxazepines

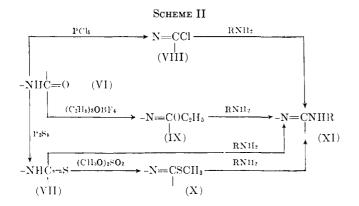
No.	\mathbf{R}_{1}	R_2	Rs	\mathbf{R}_4	Mp or bp, °C (mm)	% yield	Formula	Analyses
51	SCH_3	C_6H_5	CH_2	OCH3	108-110	94	$C_{18}H_{19}NOS$	C, H, N
52	SCH_3	Н	CHC_6H_5	н	180-185(0.25)	39	$C_{17}H_{17}NS$	N
53	SCH ₃	Н	0	н	125 - 130(0.15)	45	$C_{10}H_{11}NOS$	C, H, N
54	$HNCH_2C_6H_5 \cdot HCl$	Н	0	Н	181-183	42	$C_{16}H_{16}N_2O \cdot HCl$	С, Н, N
55	$\rm NHC_3H_7 \cdot HCl^a$	C_6H_5	CH_2	OCH3	211-213	24	$C_{20}H_{24}N_2O \cdot HCl$	С, Н, N
56	$\mathrm{NHC}_{3}\mathrm{H}_{7}\cdot\mathrm{HCl}^{a}$	Н	$\mathbf{CHC_6H_5}$	Н	182 - 185	32	$\mathrm{C}_{19}\mathrm{H}_{22}\mathrm{N}_2\cdot\mathrm{HCl}$	С, Н

^a NHC₃H₇ = NH-*n*-Pr.

TABLE V

4-(o-Anilino) butyric .	Acids
-------------------------	-------

				Y Y K	COOH R _:			
No.	\mathbf{R}_1	\mathbf{R}_2	Rs	R_4	Rs	Mp, °C	% yield	$Formula^a$
57	н	C_6H_5	Н	н	Н	146 - 147	93	$\mathrm{C}_{16}\mathrm{H}_{17}\mathrm{NO}_2$
58	CH_3	C_6H_5	н	H	н	129 - 130	80	$\mathrm{C}_{17}\mathrm{H}_{19}\mathrm{NO}_{2}$
59	н	Н	C_6H_5	н	н	166 - 167	60	$\mathrm{C_{16}H_{17}NO_2}$
60	Н	C_6H_5	н	OCH_3	н	112 - 113	45	$\mathrm{C}_{17}\mathrm{H}_{19}\mathrm{NO}_{3}$
61	Н	C_6H_5	н	OCH_3	OCH_3	92-93	40	$\mathrm{C}_{18}\mathrm{H}_{21}\mathrm{NO}_4$
^a See footno	te c, Table I.							


termediate thioimidates X, which were subjected to a nucleophilic replacement reaction in the presence of an excess of a primary amine to afford the desired amidines XI. We were especially interested in exploring the reactivity of the various thioimidates with primary amines $(X \rightarrow XI)$. It has been reported that

the basicity of the primary amines is not a decisive factor in the aminolysis of the imidates since amino acids¹² and sulfonamides¹³ also reacted with ease.

(12) S. Peterson and E. Tietze, Justus Liebigs Ann. Chem., 623, 166 (1959).

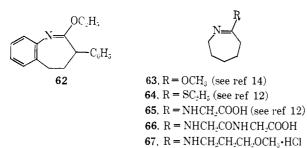

(13) S. Peterson, Angew. Chem., 64, 602 (1952).

TABLE VI

When thioimidate 32 was submitted to aminolysis with *n*-PrNH₂, amidine 43 was obtained. Under the same conditions, the 7-MeO analog of 32, thioimidate 35, also furnished the corresponding amidine 48, but in a lower yield. However, thioimidate 36 with two MeO groups, failed to give an amidine. Thus, in this series the presence of the (inductively) electron-withdrawing MeO groups appeared to diminish the reactivity of the 2-methylthio-3,4-dihydro-1-benzazepines.

Imidate 62 failed to react with glycine in boiling MeOH and also in refluxing o-PhCl₂. However, caprolactim methyl ether 63 readily reacted with glycine in refluxing MeOH to yield N-(3,4,5,6-tetrahydro-2*H*-azepin-7-yl)glycine 65, or with glycylglycine to give 66. Hence, in this instance, the bicyclic benzazepinyl imidate 62 failed to undergo aminolysis, while the monocyclic nonaromatic azepinyl imidate 63 reacted with ease.

Biological Activity.—Male and female rats were fasted for 18 hr. The animals were given a glucose load of 800 mg/kg sc. Each dose of the test compound was administered by stomach tube to 4 rats. Two hours later the animals were sacrificed and the blood sugar measured in the Technicon AutoAnalyzer. The results were recorded in Table VI.

Ten of 16 cyclic amidine derivatives showed weak to moderate hypoglycemic activity in the rat when compared to the standard tolbutamide. The most active compound was amidine 47.

Fastier has reviewed the hypoglycemic activity of amidines and noted that hypoglycemic activity was evident often only when lethal or near-lethal doses were given.¹⁵ The LD₅₀ values of most of our amidines were in the range of 150–200 mg/kg ip to the mouse. The most toxic compound in this series was the monocyclic amidine **67**. The least toxic was **66**, which showed no signs of toxicity up to 450 mg/kg ip. It is noteworthy that **66**, a glycylglycine derivative, ex-

Hypoglycemic Eff	ECT ($\%$ Reduc	TION OF BLOO	d Glucose)
		Dosage (mg/kg)	
No.	2 5	50	100
38		<5	
40		6.3	
41		15.2	
42		19.2	16.7
43		14.1	
46		12.6	
47	17.3	17.2	30.6
48	11.9	19.0	
49		$<\!\!5$	
50		12.4	
54		$<\!\!5$	
55		$<\!5$	
56		15.2	
65		<5	
66		15.9	
67		$<\!\!5$	
Tolbutamide	30.5	47.5	45.0

hibited hypoglycemic activity, while the glycyl analog **65** was devoid of hypoglycemic activity.

The intermediate lactams, especially 5, 8, and 21, were screened for CNS activity. However, no significant activity was found.

Experimental Section

Melting points are uncorrected and were determined in a Hoover melting point apparatus. The ir spectra were taken as Nujol mulls with Perkin-Elmer infrared spectrophotometers, Models 21 and 521. Uv spectra were recorded on a Cary 14 spectrophotometer. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements are within 0.4% of the theoretical values.

1,3,4,5-Tetrahydro-7-methoxy-3-phenyl-2H-1-benzazepin-2one (4) and 2,3,4,5-Tetrahydro-7-methoxy-3-phenyl-1H-2-benzazepin-1-one (18). General Procedure.-To a soln of 25.2 g (0.1 mole) of 3,4-dihydro-6-methoxy-2-phenyl-1(2H)-naphthalenone in 125 ml of AcOH, 8.2 g (0.13 mole) of NaN₃ was added with stirring and the temp of the suspension was raised to 50°. Addition of 23.7 ml of concd H₂SO₄ was started dropwise and the internal temp of the reaction mixture was kept in the range of 50-55°. The reaction flask was provided with an outlet for N_2 . The N2 was collected in an inverted graduated cylinder filled with H_2O . This way the rate of the addn of the concd H_2SO_4 could be adjusted to obtain a steady flow of N_2 and by reading the vol of the displaced H₂O the completion of the reaction was determined. It took usually 90-120 min to obtain 2.5 l. (approx 0.1 mole) of N_2 . The reaction mixture was poured slowly with stirring into a beaker contg 1 l. of 10% aq Na₂CO₃. The product was extd 4 times with EtOAc. The combined exts were washed with aq NaHCO₃ until free of AcOH, dried (Na₂SO₄), filtd, and evapd to dryness. The crude product weighed 17.0 g and represented a mixture of the two isomeric lactams 4 and 18, mp 131-185°. It was recrystd from 95% EtOH, 9.5 g (4), mp 191-193°. A second recrystn from EtOH did not raise the melting point: ir 1660 cm⁻¹ (CONH); uv max (MeOH) 245 m μ (ϵ 13,900).

Concn of the EtOH filtrate yielded another crop of cryst material: 7.2 g; mp 127-130°; ir 1660 and 1646 cm⁻¹. The two ir peaks indicated the presence of both the acylanilide and benzamide type lactams. Fractional crystn from aq EtOH did not result in satisfactory sepn of the isomeric lactams. Boiling 5.4 g of this binary mixt of lactams in 130 ml of concd HCl for 2 hr hydrolyzed the acylanilide lactam 4. The hydrolysate was evapd to dryness. The residue was dild with 130 ml of H₂O contg 10 g of NaAc and extd with EtOAc. The exts were washed with 2 N Na₂CO₃ soln, dried (Na₂SO₄), and evapd to dryness. The residue recrystd from aq EtOH gave 3.1 g of the benzamide type lactam 18: mp 146-149°; ir 1646 cm⁻¹ (CONH); uv max (MeOH), 245 m μ (ϵ 12,900).

 ⁽¹⁴⁾ R. E. Benson and T. I. Cairns, J. Amer. Chem. Soc., 70, 2115 (1948).
 (15) F. N. Fastier, Pharmacol. Rev., 14, 37 (1962).

1,3,4.5-Tetrahydro-3-(3-pyridyl)-2H-1-benzazepin-2-one (1). —A suspension of 5.6 g (0.025 mole) of 3,4-dihydro-2-(3-pyridyl)-1(2H)-naphthalenone and 1.7 g (0.025 mole) or NaN₃ in 40 g of polyphosphoric acid was stirred and heated until N₂ evolu commenced (65-70°). The calcd amount of N₂ (80 ml) evolved during the course of 2 hr. After addn of ice to the reaction mixture the phosphoric acid was neutralized with concd NH₄OH with external cooling. The cryst ppt was collected and washed with H₂O. Recrystn from CHCl₃-Et₂O afforded 3.9 g of the product; mp 183-187°; ir 1660 cm⁻¹ (CONH).

N-Alkylation of Lactams. General Procedure. 1,3,4,5-Tetrahydro-1-*n*-decyl-7-methoxy-3-phenyl-2*H*-1-benzazepin-2-one (5). —To a solu of 5.3 g (0.02 mole) of laetam 4 in 50 ml of DMF and 25 ml of PhMe was added in portions 0.95 g of NaH ($56^{+}_{...6}$ in mineral oil suspension) with stirring at room temp. When H₂ evolu ceased (approx 20 min), 5.4 g (0.02 mole) of 1-iododecane in 25 ml of PhMe was added dropwise. The reaction mixture was stirred for 5 hr. The pptd NaI-DMF complex was filt off and washed with C₆H₆. The filtrate was evapd to dryness. The oily residue was taken up in 5 ml of C₆H₆ and applied to a column prepd from 200 g of Al₂O₃ (Woelm, neutral, activity grade 3). Elution with a mixture of C₆H₆-hexane, 1:1, furnished an oil which crystd on standing. Recrystn from pentane gave 6.1 g of 5: mp 50-52°; ir 1655 cm⁻¹ (CONRR').

No chromatography was necessary for the purification of the N-alkylated lactams 8, 21, and 22.

Conversion of Lactams into Thiolactams. General Procedure. 1,3,4,5-Tetrahydro-7-methoxy-3-phenyl-2H-1-benzazepine-2-thione (13).—A mixture of 19.8 g (0.075 mole) of lactam 4 and 16.3 g of P₂S₅ in 1 l. of pyridine was heated under reflux for 2 hr. Then half of the pyridine was distd off and the remainder heated under reflux for another hr. The reaction mixture was poured, in portions, into 1 l. of boiling H₂O. Upon cooling the product pptd. It was collected, washed with H₂O, and dried in air; mp 203-206°; 20.2 g. Recrystn from EtOH raised the mp to 208-209°; uv max (MeOH) 211 m μ (ϵ 20,860).

For the isomer, thiolactam 24, uv max (MeOH) were 257 $m\mu$ (ϵ 1790), 274 (2240), and 282 (2070).

S-Methylation of the Thiolactams. General Procedure. 4,5-Dihydro-7-methoxy-2-methylmercapto-3-phenyl-3H-1-benzazepine (35).—To a soln of 17.5 g (0.618 mole) of thiolactam 13 in 340 ml of DMSO and 370 ml of MeOH was added dropwise 80 ml of 1 N NaOH with stirring at room temp. The resulting yellow soln was cooled in an ice bath and a nuxture of 9.3 g of Me₂SO₄ and 35 ml of MeOH was added to it dropwise with stirring. After completed addition, stirring was continued for 4 hr. Most of the MeOH was removed in vacuo on a water bath and after diln with H₂O the oily product was extd with EtOAc. The ext was washed with satd aq NaCl, dried (Na₂SO₄), concd and distd giving 14.5 g of an orange glass: bp 200-208° (air bath) (0.15 mm); uv max (MeOH) 243 nu μ (ϵ 13,490), 300 (10,060).

For the isomer, 4,5-dihydro-7-methoxy-1-methylmarcapto-3-phenyl-3*H*-2-benzazepine (51), uv max (MeOH) was 254 m μ (ϵ 18,440).

Amidines by Aminolysis of the Imino Thioethers. General Procedure. 4,5-Dihydro-7-methoxy-3-phenyl-2-n-propylamino-3H-1-benzazepine Hydrochloride (48).—A mixture of 7.2 g (0.024 mole) of thio imidate 35, 7.2 g (0.12 mole) of n-PrNH₂

and 50 ml of abs EtOH was heated in a sealed tube for 48 hr at 135°. The reaction mixture was evapd to dryness and the residue taken up in Et₂O. Addition of ethereal HCl afforded the HCl salt of the product, that was allowed to crystallize by storage at 5° for 2 days. Recrystn from anhyd EtOH and Et₂O gave 4.1 g of **48**: mp 197-198°; ir 1645 cm⁻¹ (aryl-C=N); uv (MeOH) 262 m μ (ϵ 15,100).

For the isomer, 3,4-dihydro-7-methoxy-3-phenyl-1-*n*-propylamino-5*H*-2-benzazepine HCl (55), ir was 1625 cm⁻¹ (C=N); uv (MeOH) 262 m μ (ϵ 15,100).

4.5-Dihydro-2-ethoxy-3-phenyl-3H-1-benzazepine (62).---A soln of 4.7 g (0.02 mole) of 1,3,4,5-tetrahydro-3-phenyl-2H-1-benzazepin-2-one⁶ and 6.1 g (0.042 mole) of triethyloxonium fluoroborate¹⁶ in 150 ml of CH₂Cl₂ was refluxed with stirring for 2 hr and then allowed to stand at room temp for 18 hr. The reaction mixture was concd *in vacuo* to approx 20 ml and dild with Et₂O. The fluoroborate salt of the product pptd. It was collected, twice recrystd from Me₂CO and once from CH₂Cl₂ and Et₂O: 3.8 g: np 192° dec.

The salt was converted into the free base by shaking it in a mixture of CH_2Cl_2 and $aq K_2CO_3$. The organic layer furnished the product which was recrysted from hexane to yield 2.0 g of **62**: np 88–90°; ir 1630 cm⁻¹ (aryl-N=C). Anal. (C₁₈H₁,NO) C, H, N.

Attempted Preparation of N-(4,5-Dihydro-3-phenyl-3*H*-1benzazepin-2-yl)glycine.—A mixture of 2.0 g of 62, 0.6 g of glycine, 10 ml of MeOII, and 10 ml of Me₂CO was refluxed with stirring for 1 hr. The reaction mixture was allowed to stand for 18 hr, evapd to dryness, and dild with H₂O. The pptd solid was collected and dried. It was found to be unreacted 62. In another attempt, 1.75 g of 62 and 0.5 g of glycine were heated with stirring in 50 ml of o-PhCl₂ at 210° for 3 hr. Again only unchanged 62 was isolated.

[N-(3.4,5.6-Tetrahydro-2H-azepin-7-yl)glycyl]glycine (66),— A soln of 26.4 g (0.2 mole) of glycylglycine in 90 ml of MeOII was stirred at room temp while 28.0 g (0.22 mole) of 63^{14} was added dropwise during a 30-min period. The reaction mixture was heated at 50° and for 1 hr and then dild with 60 ml of Et₂O. The crude product pptd: 48.7 g; mp 82–98°. It was recrystd several times from EtOII, MeOII, and finally from II₂O to afford the trihydrated form of 66: 8.3 g; mp 95–135°; ir 1678, 1665, and 1594 cm⁻¹. Anal. (C₁₀H₁₇N₃O₅·3H₂O) C, II, N.

N-(3,4,5,6-Tetrahydro-2*H*-azepin-7-yl)-3-methoxypropylamine HCl (67).--A soln of 1.8 g (0.02 mole) of 3-methoxypropylamine in 5 ml of MeOH was added dropwise to a mixture of 2.9 g (0.018 mole) of 63¹⁴ and 10 ml of MeOH. The reaction mixture was refluxed for 1 hr and then evapd to dryness *in vacuo*. The oily residue was taken up in Et₂O and treated with ethereal HCl. The pptd salt was collected and recrystd from EtOH and Et₂O to give 1.8 g of 67: mp 114-116°; ir 1690 cm⁻¹ (C=N). Anal. (C₁₀H₃₀N₂O-HCl)C,H,N.

Acknowledgments.—The authors express their appreciation to Dr. J. J. Chart and Miss N. Howie for the hypoglycemic test report and to Mr. L. Dorfman and associates for the analytical and spectral data.

(16) H. Meerwein, Org. Syn., 46 113 (1966).